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EXECUTIVE SUMMARY 

Recent additions and updates to the Comprehensive Air quality Model with extensions (CAMx) 
have increased demands on computer resources and have extended model runtimes.  The 
Texas Commission on Environmental Quality (TCEQ) plans to conduct seasonal modeling with 
particulate matter (PM) and high resolution grids, all of which increase computational 
demands.  The objectives of this project included (1) identifying areas of the CAMx code where 
improvements would likely have the most impact on model speed, (2) developing and testing 
various methods to achieve speed improvements, and (3) documenting the speed and accuracy 
impacts of these modifications using a TCEQ modeling dataset.   

Ultimately we implemented several modifications that resulted in the following speed 
improvements on two of our computer systems using the TCEQ 2012 modeling database with 
halogen chemistry (CB6r2h) and the Plume-in-Grid (PiG) module: 

 15-30% speed improvement when compiled using the Portland Group (PGF) compiler; 

 45-50% speed improvement when compiled using the Intel (IFORT) compiler. 

The project was conducted under two phases.  In Phase 1, we identified areas of the model 
most needing speed enhancements according to analyses conducted using third-party code 
profiling tools.  Two issues were immediately apparent from our analysis: 

 TCEQ should use the “K-theory” vertical diffusion in lieu of the ACM2 option.  This is a 
runtime option that requires no alternative input data or model compilation, and generates 
practically identical results in much less time. 

 An unnecessary PGF compiler flag “-Mconcur=nonuma” was found to dramatically increase 
CAMx run times with PGF v13.4.  TCEQ should remove this option in case their PGF compiler 
version is similarly affected by this flag. 

Under Phase 1 we found that the chemistry solver, and specifically a single routine that 
calculates reaction rates, comprises up to 50% of simulation time and that the addition of 
halogen chemistry slowed the model down disproportionately to the number of additional 
species and reactions.  We also identified certain issues related to our implementation of OMP 
parallelization in CAMx.   

Phase 2 addressed the highest priorities identified in Phase 1 according to available project 
resources and schedule.  We implemented and tested several modifications to CAMx code, 
OMP parallelization and compiler flags, and found five specific changes that were most 
effective in improving model speed.  We found that halogen chemistry (CB6r2h) derives more 
speedup than the standard CB6r2 mechanism, and that the modifications tend to align model 
speed performance across compilers and hardware.  Impacts to peak ozone concentrations 
from these modifications were found to be well below 1 ppb in cases without PiG, to generally 
just below 1 ppb (and in some cases just exceeding 1 ppb) with PiG.  We see no impacts to OMP 
scalability with these speed improvements. 
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We have provided the updated version of CAMx to TCEQ at the close of this project.  We 
recommend that TCEQ conduct tests over their longer modeling periods to benchmark speed 
improvements and evaluate OMP/MPI parallelization combinations.  Initial tests performed on 
the agency’s computer cluster system, but with much more parallelization, indicate speed 
improvements of about 15%, which are consistent with our results.  Greater speed 
improvements by roughly 8% are realized without the use of PiG, which is insensitive to speed 
improvements implemented in this project. 

Changes to CAMx code and compilation flags will be incorporated into the next public release of 
CAMx.  Based on results from this project, we recommend follow-on work to further improve 
CAMx speed performance. 
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1.0 INTRODUCTION 

The Texas Commission on Environmental Quality (TCEQ) uses the Comprehensive Air quality 
Model with extensions (CAMx) for ozone State Implementation Plan (SIP) modeling of Texas’ 
ozone non-attainment areas.  The TCEQ is developing new modeling periods that extend over 
the entire summer season of 2012.  Modeling will include PM chemistry and TCEQ is 
considering the use of very high resolution (1 km) grids over key areas of Texas.  Recent science 
advancements in CAMx, such as halogen chemistry, have added additional chemical species and 
reactions to the gas-phase mechanism.  All of these updates require more computer resources 
and extend the length of model runtimes relative to previous applications.  Reducing the 
turnaround time of each simulation would increase the number of analyses that can be 
performed for the next round of SIP modeling. 

1.1 Objectives 

The purpose of this Work Order is to improve the efficiency and speed of CAMx.  The project 
was conducted in two phases.  In Phase 1, we identified areas of the model most needing speed 
improvements according to analyses conducted using third-party code profiling tools, similarly 
to previous projects conducted for TCEQ (Wilson and Johnson, 2010; ENVIRON, 2012).  From 
these results, an initial strategy plan was developed that outlined our findings and set a 
prioritized list of model modifications.  In Phase 2, we implemented and tested modifications to 
CAMx code, OMP parallelization and compiler flags, addressing the highest priorities listed in 
the strategy plan according to available resources and schedule.  We have identified other 
areas for improvement that could be accomplished in follow-on work.  The modified code has 
been transferred to TCEQ for further validation and testing on the TCEQ computer system. 

1.2 Report Organization 

This section describes the purpose of this work.  Section 2 presents findings from Phase 1 of the 
project and lists our initial strategy plan based on those results.  Section 3 describes specific 
CAMx code updates, rationale, and testing results under Phase 2 of the project.  Section 4 
presents our conclusions and recommendations for future work. 
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2.0 INITIAL PROFILING AND STRATEGY DEVELOPMENT (PHASE 1) 

Several CAMx screening tests were run using a compiler-based speed profiler to identify specific 
model subroutines that should be targeted for specific efficiency improvements or that would 
potentially benefit from improved parallelization.  The testing dataset was selected with the 
TCEQ project manager and includes nested grids, Plume-in-Grid (PiG), halogen chemistry, and 
particulate matter (PM).  A Phase 1 strategy plan (Emery et al., 2015) was developed that 
documented these tests and developed a prioritized list of CAMx code modifications that was 
expected to achieve the most effective set of modifications for the available schedule and 
resources.  After reviewing the strategy plan, TCEQ authorized us to proceed with Phase 2.   

2.1 Profiling Analyses 

2.1.1 Modeling Database 

We downloaded the 2012 CAMx modeling database from the TCEQ FTP site1 on March 10, 
2015.  This dataset spans the historical period of May 16 through June 30, 2012 and includes 
three nested grids with 36, 12, and 4 km horizontal grid resolution (Figure 1), all with 28 vertical 
layers extending from the surface to an altitude of roughly 15 km.  The modeling domain is 
established on the standard National RPO Lambert Conic Conformal projection.  The input 
datasets for this application include meteorology, emissions, initial/boundary conditions, land 
cover, and other ancillary chemical data needed to run CAMx.  We did not develop or modify 
any datasets. 

2.1.2 CAMx Profiling Tests 

All CAMx profiling tests were conducted on a single isolated multi-core Linux server to remove 
any influences from extraneous CPU loads and network traffic: 

 Quad 16-core AMD Opteron 6380 chipset, 2.5 GHz 

 Linux/CentOS 6.3 

 Portland Group Fortran90 (PGF90) Workstation v13.4 

 MPICH v3.0.4 

This is the same workstation employed for TCEQ’s Near-Real Time ozone modeling projects 
(Johnson et al., 2013, 2015). 

CAMx v6.20 (ENVIRON, 2015) was compiled using PGF90 with profiling invoked for OMP 
parallelization.  Our current PGF90 license does not support profiling for MPI parallelization.  
We installed a trial license for the Portland Group’s Cluster Development Kit (CDK) for PGF90 
v15.3, which is advertised to support profiling for MPI.  However, Portland Group subsequently 
informed us that bugs precluded MPI profiling and indicated that this was scheduled to be fixed 
in the next CDK release (v15.4).  Therefore, MPI profiling was not performed. 

 

                                                        
1 ftp://amdaftp.tceq.texas.gov/pub/TX/camx/basecase/bc12_12jun.reg3a.2012_wrf361_p2a_i2_a/  
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Figure 1.  TCEQ modeling domains for the 2012 modeling database.2 

 
The following three CAMx configurations were profiled under Phase 1: 

1. May 17 (restart): 3 grids, PiG, ACM2 vertical mixing, chemistry CB6r2/CF (CB6r2 + PM), no 
compiler optimization, OMP parallelization (8 threads). 

2. May 17 (restart): 3 grids, PiG, K-theory vertical mixing, chemistry CB6r2/CF (CB6r2 + PM), 
“O2” compiler optimization, OMP parallelization (8 threads) 

3. May 17 (restart): 3 grids, PiG, k-theory vertical mixing, chemistry CB6r2h (no PM), “O2” 
compiler optimization, OMP parallelization (8 threads) 

Run times during the first simulation day (May 16) may not be representative of other days of 
the episode due to chemical spin-up from initial conditions.  Therefore, we conducted code 
profiling for May 17 to separate reported processor times from the chemical spin-up.   

                                                        
2  https://www.tceq.texas.gov/airquality/airmod/data/domain  
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2.1.3 Results 

2.1.3.1 Run 1 

Table 2-1 presents Run 1 timing results from OMP thread 0 (consisting of all model processes).  
The sum of all processes and individual routines listed comprised 95% of the 13,702 second 
total CPU time for thread 0. 

Chemistry used the majority of time, with more than 23% spent in gas-phase chemistry versus 
less than 3% in PM chemistry.  The EBIRATE routine alone used one-third of time spent in gas 
chemistry.  EBIRATE calculates linear combinations of chemical rates for all reactions in the gas-
phase mechanism and is implemented in a manner that accesses the chemical rate array non-
sequentially.  The EBIRXN routine provides an interesting comparison because EBIRXN performs 
similar operations to EBIRATE but EBIRXN accesses memory more sequentially and consumes 
less CPU time (4% as compared to 8%).  Non-sequential memory access may be a cause of 
inefficiency in EBIRATE.  We assigned a high priority to making EBIRATE more efficient. 

Diffusion consumed the second most CPU time after chemistry.  The majority of time (11%) was 
spent in the ACM2 vertical diffusion solver whereas horizontal diffusion used less than 5%.  
Using the default K-theory vertical diffusion should reduce total time in diffusion to less than 
10% of total run time. 

The process labelled “OMP” includes Fortran library functions to manage parallelization.  OMP 
added 13% of overhead to the run time for thread 0.  About 5% of time was spent in “barrier” 
functions, indicating load imbalances where completed threads wait for the slowest threads to 
finish.  We identified 3 routines with OMP load imbalances: PIGDRIVE, TRIDIAG, and ZADVEC.  
By far the largest OMP load imbalance existed in PIGDRIVE which applies OMP parallelization to 
the loop over puff chemistry in first half of the routine but not to the loop over puff growth and 
dumping in the second half.  The load imbalance in the puff chemistry loop was mostly likely 
caused by skipping puffs because they are inactive, outside the current grid of interest, or 
chemistry is bypassed or highly simplified for strategic reasons.  Prior to the effort to accelerate 
PiG chemistry (Emery et al., 2013), implementing OMP just for chemistry was an effective 
strategy for PIGDRIVE.  Now that PiG chemistry runs quickly the parallelization of the 
growth/dumping loop should be considered.  TRIDIAG and ZADVEC are called in vertical 
transport (advection and diffusion) where load imbalances most likely result from skipping grid 
columns where the solution is replaced by results from an underlying nested grid, and 
secondarily from variations in solution times among different grid columns. 

The process labelled “System” includes Fortran intrinsic math functions (e.g., logarithms) and 
management processes such as dynamic allocation.  System routines took 10% of total runtime.  
It was not originally clear how this process could be improved for speed, but in Phase 2 we 
identified a compiler option (IEEE) that significantly increases runtime.  This option forces math 
expressions to be consistently calculated among different compilers, resulting in identical CAMx 
results between PGF90 and Intel compilations at the cost of execution speed. 
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Table 2-1.  Run 1 process and routine CPU time for OMP thread 0.  Routines parallelized with 
OMP are noted. 

Process Routine OMP Time (s) Time (% of total) 

Chemistry 
26% 

ebirate2  1,033 8% 

ebisolv  495 4% 

chemdriv  415 3% 

hr_hox2  385 3% 

ebirxn2  338 2% 

hr_nox2  214 2% 

hr_nxy2  106 <1% 

hr_pan2  93 <1% 

calcact  90 <1% 

ktherm  79 <1% 

Diffusion 
16% 

matrix  803 6% 

diffus  624 5% 

vdiffacm2  528 4% 

tri  132 1% 
OMP 
13% 

_mp_taskv2_init_contexts  307 2% 

_mp_barrierw  283 2% 

_mp_barrier  260 2% 

_mp_get_schedule  163 1% 

_mp_p2  162 1% 

_mp_barrierr  159 1% 

_mp_cslave  157 1% 

_mp_cdecl  94 <1% 

_mp_create_team  85 <1% 

_mp_get_bind  76 <1% 

V Advection 
11% 

vrtslv  620 5% 

tridiag  402 3% 

zadvec  252 2% 

zrates partial 72 <1% 

System 
10% 

__mth_i_dpowd  208 2% 

_int_free  188 1% 

__mth_i_dexp  187 1% 

__mth_i_dexp2  172 1% 

__c_mzero4  164 1% 

__mth_i_dlog2  156 1% 

__mth_i_exp  122 <1% 

_int_malloc  74 <1% 

__c_mcopy4  72 <1% 

H Advection 
9% 

hadvppm  933 7% 

xyadvec  237 2% 

PiG 
5% 

pigdrive partial 490 4% 

virtdump  103 <1% 

TUV 
2% 

drvtuv  138 1% 

pp2str  83 <1% 

Output 
1% 

aggreg  72 <1% 

average  111 <1% 

Emissions 1% Emiss partial 137 1% 
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2.1.3.2 Run 2 

Table 2-2 presents Run 2 timing results from OMP thread 0 (consisting of all model processes).  
The sum of all processes and individual routines listed comprised 93% of the 12,763 second 
total CPU time for thread 0.  Total run time decreased 7% relative to Run 1. 

Chemistry continued to use the most time, increasing to more than 28% spent in gas-phase 
chemistry versus less than 3% in PM chemistry.  EBIRATE remained one-third of time spent in 
gas-phase chemistry and the absolute time spent in EBIRATE increased over Run 1 indicating 
that compiler optimization was ineffective, if not detrimental for that routine. 

OMP and System processes both increased relative to Run 1.  OMP added 14% of overhead to 
the run time for thread 0, with 5% of time spent in “barrier” functions.  System routines took 
11% of total run time.  With the removal of ACM2, run time spent in diffusion dropped to 8% 
(as anticipated) and diffusion ranked below horizontal and vertical advection.  The PiG process 
improved relative to Run 1 (possibly due to optimization) while the output process was 
relatively slower. 

2.1.3.3 Run 3 

Table 2-3 presents Run 3 timing results from OMP thread 0 (consisting of all model processes).  
The sum of all processes and individual routines listed comprised 92% of the 15,519 second 
total CPU time for thread 0.  Total run time increased 22% relative to Run 2. 

Chemistry continued to take the most time with gas-phase chemistry increasing to 48% of total 
run time with the introduction of halogen chemistry.  EBIRATE took nearly half of the time 
spent in gas chemistry (a quarter of total run time) due to the larger number of reactions and 
species in the halogen version.  EBIRATE consumed four times more CPU than EBIRXN (21% vs. 
5%) suggesting that revisions to EBIRATE could realize substantial speedup for larger chemical 
mechanisms such as CB6r2h.  OMP and System processes both decreased relative to Run 2.  
Run times for all other processes remained roughly similar to Run 2. 

Subsequently we discovered that PGF v13.4 slowed the model considerably relative to our 
legacy compiler (v8.0).  We tracked the cause to a particular PGF compiler flag (“-Mconcur= 
nonuma”).  This flag was left over from earlier versions of CAMx when the compilation was set 
to build static executables, whereas now the compilation builds dynamic executables.  Removal 
of this flag has no impact on model results other than speed.  It is unclear at which PGF version 
(between v8 and v13) this flag began to negatively impact model speed for dynamic builds.  We 
have removed this flag from all subsequent testing documented in this report, and have 
included this change in the updated model delivered to TCEQ. 
 
Profiling for Run 3 was repeated with the “nonuma” flag removed.  Table 2-4 presents timing 
results from OMP thread 0 (consisting of all model processes).  The sum of all processes and 
individual routines listed comprised 93% of the 11,952 second total CPU time for thread 0.  
Total run time decreased 23% relative to Run 3 with “nonuma”.  Although the order and 
relative time spent in each process remained similar to Table 2-3, the reduction in time spent in  
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Table 2-2.  Run 2 process and routine CPU time for OMP thread 0.  Routines parallelized with 
OMP are noted. 

Process Routine OMP Time (s) Time (% of total) 

Chemistry 
31% 

ebirate2  1252 10% 

Ebisolv  540 4% 

ebirxn2  492 4% 

hr_hox2  462 4% 

Chemdriv  377 3% 

hr_nox2  228 2% 

hr_nxy2  104 <1% 

hr_pan2  92 <1% 

Calcact  72 <1% 

Khetero  64 <1% 

OMP 
14% 

_mp_barrier  333 3% 

_mp_taskv2_init_contexts  307 2% 

_mp_cpenter  215 2% 

_mp_p2  166 1% 

_mp_has_running_subtasks  159 1% 

_mp_barrierw  141 1% 

_mp_barrierr  134 1% 

_mp_cdeclp  94 <1% 

_mp_get_blist  84 <1% 

_mp_create_team  74 <1% 

System 
11% 

__mth_i_dpowd  208 2% 

_int_free  205 2% 

__mth_i_dexp  168 1% 

__mth_i_dexp2  163 1% 

__mth_i_dlog2  153 1% 

_wordcopy_fwd_aligned  151 1% 

__mth_i_exp  133 1% 

_int_malloc  84 <1% 

V Advection 
11% 

Zadvec  477 4% 

Tridiag  379 3% 

Vrtslv  348 3% 

Zrates partial 71 <1% 

H Advection 
9% 

Hadvppm  906 7% 

Xyadvec  224 2% 

Diffusion 
8% 

Diffuse  540 4% 

Tridiag  379 3% 

Vdiffimp  116 <1% 

PiG 3% Pigdrive partial 423 3% 

Output 
3% 

Massum  169 1% 

Average  139 1% 

Aggreg  72 <1% 

TUV 
2% 

Drvtuv  125 1% 

pp2str  89 <1% 

Emissions 1% Emiss partial 130 1% 
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Table 2-3.  Run 3 process and routine CPU time for OMP thread 0.  Routines parallelized with 
OMP are noted. 

Process Routine OMP Time (s) Time (% of total) 

Chemistry 
48% 

ebirate3  3250 21% 

hr_hox3  1028 7% 

ebisolv  869 6% 

ebirxn3  770 5% 

hr_nox3  606 4% 

chemdriv  367 2% 

hr_nxy3  259 2% 

hr_pan3  227 1% 

kphoto  62 <1% 

OMP 
12% 

_mp_taskv2_init_contexts  330 2% 

_mp_barrier  309 2% 

_mp_cpenter  216 1% 

_mp_barrier2  167 1% 

_mp_has_running_subtasks  167 1% 

_mp_p2  166 1% 

_mp_threads_at_level  164 1% 
_mp_barrierw  161 1% 

_mp_create_team  136 <1% 

_mp_barrierr  105 <1% 

V Advection 
8% 

zadvec  457 3% 

tridiag  364 3% 

vrtslv  343 2% 

zrates partial 71 <1% 

Diffusion 
7% 

diffuse  512 3% 

tridiag  364 3% 

vdiffimp  114 <1% 

H Advection 
7% 

hadvppm  900 6% 

xyadvec  232 1% 

System 
5% 

_int_free  184 1% 

__mth_i_dexp2  136 <1% 

__mth_i_dlog2  128 <1% 

__mth_i_dpowd  96 <1% 

_int_malloc  92 <1% 

PiG 3% pigdrive partial 431 3% 

Output 
2% 

massum  176 1% 

average  87 <1% 

aggreg  74 <1% 

Emissions 1% Emiss partial 130 1% 
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Table 2-4.  Process and routine CPU time for OMP thread 0 resulting from a rerun of Run 3 
(Table 2-3) with the PGF “-Mconcur=nonuma” flag removed.  Routines parallelized with OMP 
are noted. 

Process Routine OMP Time (s) Time (% of total) 

Chemistry 
51% 

ebirate3  2,715 23% 

hr_hox3  868 7% 

ebirxn3  659 6% 

hr_nox3  513 4% 

ebisolv  471 4% 

chemdriv  348 3% 

hr_nxy3  228 2% 

hr_pan3  196 2% 

V Advection 
9% 

tridiag  316 3% 

zadvec  306 3% 

vrtslv  257 2% 

zrates partial 92 <1% 

Diffusion 
9% 

diffuse  539 5% 

tridiag  364 3% 

vdiffimp  114 <1% 
H Advection 
7% 

hadvppm  651 5% 

xyadvec  188 2% 

PiG 5% pigdrive partial 593 5% 

OMP 5% _mp_barrier  591 5% 

System 
4% 

__c_mzero4  151 1% 

__mth_i_dexp2  136 1% 

__mth_i_dlog2  131 1% 
__mth_i_dpowd  91 <1% 

Output 
3% 

massum  172 1% 

average  85 <1% 

aggreg  73 <1% 
Emissions 1% Emiss partial 178 1% 

 
 
OMP routines was the largest impact, from 12% to just 5% (about 40% of the total reduction in 
run time).  
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2.2 Prioritized List of Speed Improvements 

At the close of Phase 1, we developed a list of recommended changes based on the profiling 
analyses described above and in accordance with our understanding of potential speed 
impediments at the time.  We ranked the actions from highest to lowest priority considering 
ease of implementation and likely impact to run time.  Actions toward the bottom of the list 
require greater effort and more fundamental changes to the CAMx code structure, but carry 
less certainty for speed improvements.  Whereas our understanding of factors impacting CAMx 
speed have evolved with our analyses and tests conducted under Phase 2, recommendations 
beyond the first four remain relevant and should be considered for future improvements.  
Additional details for each item below are provided in the Phase 1 report (Emery et al., 2015). 

1. We recommend that K-theory be used in lieu of ACM2.  This is a runtime option that 
requires no alternative input data or model compilation.  ACM2 adds significantly to CAMx 
run time but results in similar concentration patterns relative to the default K-theory 
option.  Furthermore, ACM2 is not compatible with all CAMx Probing Tools, requiring the 
use of K-theory for any decoupled direct method (DDM) sensitivity or process analysis 
applications.  The ACM2 solver was developed by EPA; we understand that EPA is improving 
the ACM2 solver and will distribute it with the release of CMAQ v5.1 in September 2015.   

2. Revise EBIRATE to employ a more efficient strategy. Test several approaches to maximize 
efficiency. Improving the efficiency of EBIRATE is a high priority. 

3. Add OMP parallelization to PIGDRIVE around the loop that performs puff growth and mass 
dumping to the grid. 

4. Test alternative ways to parallelize loops in transport processes (vertical/horizontal 
advection and diffusion) to improve OMP load balance and efficiency, if possible.   

5. Apply F90 vector methods to variable assignments where possible, rather than using explicit 
loops and array index pointers.  

6. Improve MPI load balancing by considering spatial distributions of PiG sources and 
potentially other factors.  Run times for specific MPI sub-domains may be influenced by the 
workload required to process PiG puffs.   

7. Restructure the order of dimensions in major multi-dimensional variable arrays 
(concentration, meteorology, and other fields) for improved memory caching in local 
routines.   

8. Revise process splitting order (in combination with restructuring the dimensions of variable 
arrays).  The goal would be to minimize the amount of memory caching and time taken in 
assigning local variable arrays from the major concentration and meteorological arrays.  A 
more efficient approach would be to group all processes that operate on the same spatial 
dimension.   

The modification noted in point (8) above would likely translate to improved MPI scaling 
efficiency as well by reducing the number of overlapping (shared) grid cells among MPI sub-
domains.  Overlapping cells are used as internal “boundary conditions” through which chemical 
mass is passed among the sub-domains.  The number of overlapping cells is currently 5, and this 
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is based specifically on the process order currently implemented in CAMx; 5 overlapping cells 
are needed to ensure that an MPI application results in exactly the same concentration fields as 
a serial run.  Reordering the physical processes in the model could conceivably reduce the 
overlap to 2 or 3. 

As an example, consider a moderate grid of 120x90 grid cells with MPI applied over 16 cores, or 
4x4 MPI sub-domains.  The addition of 5 overlap cells surrounding each sub-domain results in 
67% more grid cells to solve (i.e., 67% additional overhead).  This translates to a best scaling 
efficiency of 60% for this configuration, meaning a run on 16 cores is at best equivalent to 9.6 
cores (ignoring other forms of overhead involving inter-core network memory passes and MPI 
management, which in reality further reduce scalability).  Looking at this another way, if that 
run takes 16 hours/day on 1 core, 100% scaling efficiency would theoretically take 1 hour on 16 
cores, but with 5 overlap cells would take at best 1.7 hours.  Doubling MPI cores to 32 further 
reduces scaling efficiency to 49% (effectively 15.7 cores); the 16 hour/day serial run would 
theoretically take 0.5 hours, but with 5 overlap cells would take 1 hour.  If overlap cells could be 
reduced to just 2 in each dimension, scaling efficiency would be 80% for 16 cores (12.8 effective 
cores) and 73% for 32 cores (23.4 effective cores).  In this case, a 16 hour serial run would be 
reduced to 1.25 hours with 16 cores and 0.7 hours with 32 cores. 
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3.0 CODE IMPROVEMENTS AND TESTING (PHASE 2) 

We carefully considered, implemented and tested the effects of several targeted modifications 
to CAMx v6.20 based on the Phase I Strategy Plan.  Impacts to model speed were compared to 
the original code for each modification.  Our approach focused on addressing the highest 
priority issues to the extent that the project schedule allowed. 

We conducted testing using two datasets: (1) certain interim assessments of code and compiler 
option changes were performed using the standard CAMx test case that is distributed with the 
model at www.camx.com; (2) other assessments and all final testing were performed using the 
TCEQ modeling database employed in Phase 1.  Testing included variable OMP and MPI parallel 
processing to gauge efficiency gains and to verify consistent model output, with appropriate 
quality assurance steps and code review.  Our goals for this phase included improving model 
speed for a set number of processors, and to the extent possible, extend speed gains out to 
larger numbers of processors than can be currently realized (i.e., improve parallelization 
“scalability”).   

3.1 Code and Compilation Modifications 

3.1.1 Chemical Solver Efficiency and PiG Load Imbalances 

Our early efforts under Phase 2 focused on improvements to the EBIRATE chemistry routine 
and OMP imbalances related to sparse PiG puff operations (chemistry, growth, dumping).   

EBIRATE updates net production and loss rates for all gas species at each chemical time step by 
calculating linear combinations of individual reaction rates in a manner that accesses the 
chemical rate array non-sequentially.  At the time we expected non-sequential memory access 
to be a cause of inefficiency.  EBIRATE is one of several chemistry subroutines that are 
computer-generated by the Chemical Mechanism Compiler (CMC).  The CMC codes EBIRATE in 
a straightforward manner without any specific strategy for accessing memory efficiently.   

We considered several approaches to improve EBIRATE.  First, we replaced EBIRATE with an 
optimized linear algebra routine available in the Netlib LAPACK library 
(http://www.netlib.org/lapack/), but this resulted in slower execution speed.  Second, we 
wrote a new vector multiplication routine specific to EBIRATE, but that was also slower.  Third, 
we restructured array indices and loop order, but that had only a marginal impact on EBIRATE 
speed.  Therefore, these approaches were dropped from further consideration. 

Overhead associated with OMP parallelization is exacerbated by load imbalance among 
processor threads.  This can occur when successive iterations through a parallelized loop have 
very different workloads, such as the extreme example when some iterations have nothing to 
do (e.g., an empty puff or a grid cell that is skipped because it contains a nest) but other 
iterations must perform a heavy workload (e.g., chemistry).  We expected that PiG processes in 
particular are a source of significant OMP load imbalance because PiG memory arrays become 
quite sparse as puff populations grow and individual puffs are deactivated at different times.  
We developed and implemented a new routine to condense the PiG variable arrays at each 
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time step, thereby maintaining active puffs in sequentially-ordered memory structures.  
However, only marginal speed impacts were realized in tests conducted with the 2012 TCEQ 
dataset.  This modification was dropped from further consideration in this project, but we may 
continue to test it for a variety of PiG applications in the future. 

Another potential issued identified in Phase 1 was the lack of OMP parallelization applied to the 
PiG growth and dumping section of PIGDRIVE.  Implementing OMP around the puff 
growth/diffusion loop required substantial modifications to the PIGDRIVE routine to allow 
common memory structures (i.e., three-dimensional gridded concentrations) to be 
mathematically combined with OMP thread-private puff variables (i.e., mass to be dumped).  
Again, no significant speedup resulted from this change and so it was dropped from further 
consideration in this project.  However, it may be implemented in future efforts to expand OMP 
to other areas of the code. 

3.1.2 Additional Modifications 

During the course of our investigations under Phase 2, several additional code modifications 
were implemented and tested.  Each is described below. 

3.1.2.1 IEEE and Mixed-Mode Math 

We found that CAMx speed is impacted by a particular compiler flag that forces math 
expressions to be calculated using standard IEEE methods (i.e., –Kieee in PGF90 and -mieee-fp 
in IFORT).  Without these flags, compilers are free to calculate math expressions using their 
own specific and often optimized strategies.  Moreover, each compiler handles “mixed mode” 
math differently (e.g., real = real/integer, real = real*dreal, real = real**integer)3.  Removal of 
IEEE flags can speed up the model, but leads to differences in mathematical calculations 
(particularly for mixed mode math) and thus model results.  Up through v6.20, the CAMx 
“makefile” has included IEEE flags by default to ensure that nearly identical results are achieved 
across different compilers.   

Elimination of mixed mode math throughout CAMx would reduce the dependency on IEEE flags 
(e.g. converting real=real/integer to real=real/float(integer)).  Most instances are properly 
handled in CAMx, but it would take an extensive and concerted effort to review the entire 
model code to catch improper mixed mode statements.  Several changes involving mixed mode 
algebra were made in the EXPTBL routine (which computes rate constants for gas-phase 
chemistry) and this did reduce dependency on the IEEE compiler flags.  Tests suggest that the 
most important issues are with mixed single/double precision math.  For one such case in a dry 
deposition routine IFORT resulted in a NaN when the IEEE flag was removed, but PGF 
completed successfully.  The CAMx code was reviewed for such improper mixed single/double 
precision statements and fixed where necessary. 

We plan to complete a systematic review of the entire CAMx code for mixed mode math in the 
future, although test results described below suggest that remaining differences from removing 

                                                        
3 “dreal” refers to a double-precision real variable, “**” refers to raising to a power. 
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IEEE flags are small for ozone when PiG is not used.  Larger but short-lived differences occur 
with PiG due to small changes in puff behavior (e.g., when and where mass dumping to the grid 
occurs).  Larger differences may also occur for some PM species, particularly nitrate, and this is 
a result of how the ISORROPIA thermodynamic portioning algorithm is designed.  The IEEE 
option is now an option in the CAMx makefile, and by default is not engaged.   

3.1.2.2 EBI Solver Convergence 

One reason why halogen chemistry runs more slowly than CB6r2 is that the EBI solver 
converges more slowly in high model layers.  The solver was converging halogen species to 
0.1% even when they had very small concentrations.  We revised the EBI solver convergence 

criterion to be more tolerant of relative error when absolute error is smaller than 110-8 ppm.  
In tests described below, run time for the halogen mechanism was about 20% faster with this 
change, but nearly unchanged for CB6r2.  Additional speedup for halogen chemistry may 
require EBI solver customization.   

3.1.2.3 Streamlining EBIRATE 

In CAMx v6.20 EBIRATE calculates terms for several species (NO, NO2, O3, OH, HO2, O1D, O, 
NO3, N2O5, PAN, C2O3, HONO, PNA) that the EBI solver does not need because these species 
are solved more efficiently by other EBI solver subroutines.  These terms are only needed to 
calculate rate constant sensitivity when the Decoupled Direct Method (DDM) probing tool is 
invoked and is instructed to track these specific sensitivities.  Commenting out these terms in 
CB6r2 demonstrated some speedup and no loss of accuracy (as expected).  A more 
sophisticated and permanent solution is needed to modify the CMC and produce a dedicated 
subroutine that calculates these terms only when they are needed for DDM rate constant 
sensitivity. 

3.1.2.4 Revised OMP Loop Scheduling and Collapsing 

In CAMx v6.20 all OMP parallel do loops are scheduled as “dynamic”.  This means that threads 
are allocated to cores dynamically as the loop executes, resulting in good load balance at the 
expense of overhead for managing dynamic scheduling.  The “static” option incurs much lower 
overhead than “dynamic”.  Loops with inherently good load balance (i.e., all loop iterations 
have the same computational load) should be scheduled as “static”, meaning loop iterations 
are distributed evenly to cores when loop execution starts.  A middle ground is called “guided”, 
but tests with that option resulted in the slowest run time.   

Load imbalances within CAMx OMP loops occur mostly when operations are skipped for grid 
cells covering an underlying nested grid (this happens for chemistry, vertical advection and 
diffusion).  A more extreme issue exists for OMP looping in wet scavenging where non-raining 
grid columns are skipped, and for OMP looping over sparse PiG vectors as described in Section 
3.1.1.  These loops must remain scheduled as “dynamic”.  In the future, we may consider 
eliminating the nested grid checks to skip computations, and scheduling all such loops as 
“static”, thus trading more work for better load balance and potentially improving OMP 
scalability to larger numbers of threads. 



July 2015 
 
 

17 

In CAMx v6.20 only the outermost loops are scheduled for OMP parallelization, offering fewer 
possible threads to distribute over cores.  The OMP “collapse(2)” option can be applied to two 
immediately nested loops (outer and inner) so that they are scheduled together and act as a 
one loop over a single vector.   

Based on test results for individual loops, we updated the OMP scheduling as follows (changes 
indicated in bold):   

aggreg.f: c$omp do schedule(static) 
chemdriv.f: c$omp do schedule(dynamic) collapse(2) 
diffus.f: c$omp do schedule(dynamic) 
drydep.f: c$omp do schedule(static) 
emiss.f: c$omp do schedule(static) 
wetdep.f: c$omp do schedule(dynamic) 
xyadvec.f: c$omp do schedule(static) 
zadvec.f: c$omp do schedule(dynamic) 
zrates.f: c$omp do schedule(static) 

Additionally, we added OMP loop scheduling in DRVTUV, which calculates in-line cloud and 
aerosol adjustments to clear-sky photolysis rates for each grid cell.  This is another case for 
potential load imbalances as iterations are skipped for night conditions and the workload is 
reduced for non-cloudy grid cells. 

drvtuv.f: c$omp do schedule(static) collapse(2) 

3.1.3 Interim Speed and Scalability Testing 

The four modifications described in Section 3.1.2 were tested to evaluate impacts to model 
speed and OMP scalability.  Interim tests were conducted for the second day of the 2-day CAMx 
test problem distributed with the model at www.camx.com.  The domain consists of a relatively 

small (6868) master grid at 36 km resolution covering the US Midwest, and a nested grid 

(92115) at 12 km resolution covering the upper Midwest.  Both grids have 16 vertical layers.  
PiG was turned off for the speed tests but turned on for OMP scalability tests.  Two gas-phase 
chemical mechanisms were tested: CB6r2 and CB6r2h, both without PM. 

Speed and accuracy tests were conducted on a dual 12-core Intel Xeon X5660 chipset (2.8 GHz) 
using 6 OMP threads for each run, but no MPI parallelization.  Runs were conducted with PGF 
and IFORT compilations.  Three runs were performed simultaneously with local I/O to minimize 
impacts from network latency.  Model execution speed was metered using the Linux 
“/usr/bin/time” utility.   

Tables 3-1 and 3-2 show the run time and accuracy results for (1) groups of CAMx updates and 
(2) removal of the IEEE compile flag.  The run labelled “CAMx v6.20” is the unmodified version 
of the model.  The modifications labelled “updates” include changes to EBI solver convergence 
and OMP loop scheduling.  The modification labelled “trim” refers to EBIRATE streamlining to 
remove DDM rate sensitivities.   
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Table 3-1.  CAMx speed test results using CB6r2 with PGF and IFORT compilers.  
 CB6r2 (no PM) PGF IFORT 

Seconds Percent Seconds Percent 

CAMx v6.20, IEEE on 1329 100% 1521 100% 

CAMx updates, IEEE on 1262 95% 1322 87% 

CAMx updates, IEEE off 1125 85% 882 58% 

Updates & trim, IEEE off 1028 77% 826 54% 

 

Table 3-2.  CAMx speed test results using CB6r2h with PGF and IFORT compilers.  
 CB6r2h (no PM) PGF IFORT 

Seconds Percent Seconds Percent 

CAMx v6.20, IEEE on 2947 100% 3385 100% 

CAMx updates, IEEE on 2273 77% 2308 68% 

CAMx updates, IEEE off 2036 69% 1678 50% 

 
 
Our findings from these results are: 

1. Both the “updates” and removal of IEEE compiler flags improve speed; 

2. Halogen CB6r2h derives more speedup from the updates than CB6r2; 

3. IFORT derives more speedup from removing IEEE flags than PGF; 

4. Removing IEEE flags appears to be safe after making the updates; 

5. The “trim” modification gives some speedup but requires a CMC update to be automated; 

6. IFORT ends up with a substantial (~20%) speed advantage over PGF. 

Table 3-3 lists the largest differences in ozone (ppm) for the CB6r2 cases (Table 3-1).  The 
reference case is chosen as “CAMx updates, IEEE on” with PGF because one of the CAMx 

updates changed EBI solver accuracy.  Maximum differences of up to ~110-4 ppm (0.1 ppb) are 
considered acceptable.  We also reviewed results for species other than ozone and found 
nothing alarming. 

Table 3-4 shows the average number of iterations taken by the EBI chemistry solver, over all 
cells of both grids, for CB6r2 and CB6r2h in the tests described above.  The EBI solver 
convergence update had only a small impact for CB6r2, but the update greatly reduced the 
number of iterations for CB6r2h leading to model speedup.  However, CB6r2h continued to 
require more iterations than CB6r2 after the update. 
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Table 3-3.  CAMx ozone accuracy test results using CB6r2 with PGF and IFORT compilers. The 
accuracy metric is the maximum difference in ozone (ppm) from the reference case. 

CB6r2 (no PM)  PGF IFORT 

Grid 1 Grid 2 Grid 1 Grid 2 

CAMx v6.20, IEEE on 9.7710
-5 1.0510

-4 9.7610
-5 1.0510

-4 

CAMx updates, IEEE on reference reference 3.5010
-5 9.5810

-5 

CAMx updates, IEEE off 2.4410
-6 4.2810

-6 3.6110
-5 6.6410

-5 

Updates & trim, IEEE off 2.4610-6 4.2810-6 3.6110-5 6.6410-5 

 

 

Table 3-4.  Average number of iterations taken by the CAMx EBI chemistry solver by grid, for 
CB6r2 and CB6r2h.  

Mechanism  Grid 1 Grid2 

CB6r2 – original EBI solver 6.5 5.0 

CB6r2 – updated EBI solver 5.7 4.7 

CB6r2h – original EBI solver 16.6 10.4 

CB6r2h – updated EBI solver 7.7 5.7 

 
 
OMP scalability tests were conducted on a dual 12-core Intel Xeon X5660 chipset (2.8 GHz) 
using PGF and IFORT builds for both the unmodified CAMx v6.20 (labelled “STD”) and all code 
updates described in Section 3.1.2 (labelled “UPD”).  MPI parallelization was excluded.  Each 
run was performed sequentially with no extraneous workload that might confound the results.  
Figure 3-1 and Table 3-5 show the results of OMP scalability tests using CB6r2 without PiG 
invoked.  The term “effective threads” indicates the net equivalent speedup for the given 
number of actual assigned threads due to un-parallelized areas of the model and various 
impediments from overhead processes.  A perfectly scaling code would align along the 1:1 line 
in Figure 3-1.  Although results were similar among CAMx and compiler versions, the IFORT STD 
case scaled best perhaps because it is the slowest (least efficient floating point execution).    

OMP scalability tests were repeated on the same machine for CB6r2 with PiG invoked.  Results 
are shown in Figure 3-2 and Table 3-6.  A notable drop in scalability occurred with the 
introduction of PiG.  However, the IFORT update case resulted in odd performance for 
unexplained reasons. 
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Figure 3-1.  OMP scalability test results for the unmodified CAMx v6.20 (STD) and the 
modified code (UPD) for both PGF and IFORT compilers.  Tests used CB6r2 (without PM) and 
without PiG invoked.  Tests did not include MPI parallelization.  The “IDEAL” case represents 
perfect parallel scalability. 

 

Table 3-5.  OMP scalability test results shown in Figure 3-1. 

Threads 

PGF IFORT 

CAMx v6.20 CAMx Updates CAMx v6.20 CAMx Updates 

Sec Eff Threads Sec Eff Threads Sec Eff Threads Sec Eff Threads 

1 4429 1.0 3786 1.0 5797 1.0 3065 1.0 

4 1354 3.3 1170 3.2 1770 3.3 933 3.3 

6 1058 4.2 908 4.2 1323 4.4 708 4.3 

8 865 5.1 726 5.2 1059 5.5 576 5.3 

10 775 5.7 649 5.8 938 6.2 509 6.0 

12 720 6.2 591 6.4 854 6.8 472 6.5 
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Figure 3-2.  As in Figure 3-1, but with PiG invoked. 

 

Table 3-6.  OMP scalability test results shown in Figure 3-2. 

Threads 

PGF IFORT 

CAMx v6.20 CAMx Updates CAMx v6.20 CAMx Updates 

Sec Eff Threads Sec Eff Threads Sec Eff Threads Sec Eff Threads 

1 4781 1.0 4149 1.0 6221 1.0 3460 1.0 

4 1530 3.1 1338 3.1 1956 3.2 1132 3.1 

6 1223 3.9 1053 3.9 1533 4.1 934 3.7 

8 1006 4.8 871 4.8 1259 4.9 846 4.1 

10 924 5.2 779 5.3 1137 5.5 732 4.7 

12 848 5.6 722 5.7 1042 6.0 661 5.2 
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3.2 Final Testing 

3.2.1 Speed Tests 

A final set of model tests were conducted to compare speed and ozone concentration 
differences resulting from all of the code and compiler modifications.  Specifically these 
modifications included: 

 Removal of IEEE compiler flags 

 Improvements to EBI convergence criteria 

 Streamlining the EBIRATE routine to remove DDM-specific code 

 Revised OMP Loop Scheduling and Collapsing 

 Improvements to a few instances of mixed-mode math in chemistry and dry deposition 

Tests were conducted using the same TCEQ 2012 modeling database employed during Phase 1 
of the project.  A single day (May 17) was run with the same model configuration as “Run 3” 
described in Section 2.1.2: 

 3 grids (36, 12, 4 km) 

 PiG turned on 

 K-theory vertical mixing 

 CB6r2h chemistry mechanism 

 No Probing Tools 

Both modified and un-modified versions of CAMx were compiled using PGF compiler v13.4-0 
and Intel (IFORT) compiler v15.0.2.164.  Both compilers were installed on an Intel Xeon E5440, 
and so all compilations were performed on that machine.  The standard “O2” compiler 
optimization was invoked for all compilations.  The PGF flag “-Mconcur=nonuma” was removed 
in all cases. 

Both PGF and IFORT builds of unmodified and modified versions of CAMx were run on two 
different computers to test differences among compilers and hardware, resulting in 8 separate 
runs.  The specifications for the two computers are listed below: 

 Dual 12-core Intel Xeon X5660 chipset, 2.8 GHz, 48 GB RAM 

 Quad 16-core AMD Opteron 6380 chipset, 2.5 GHz, 128 GB RAM 

All runs on both machines utilized 24 cores total, divided among 6 MPI sub-domains by 4 OMP 
threads, in accordance with scripts we received from TCEQ.  Table 3-7 displays run times for the 
single-day simulations, resulting relative speedup between the unmodified and modified 
model, and domain-wide maximum surface ozone differences on each of the three grids 
between the unmodified and modified model.   
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Table 3-7.  CAMx run times for a single simulation day (May 17, 2012) using the original 
model vs. incorporating all speed updates, and domain-wide maximum ozone differences 
resulting from the updates.  CAMx was built using PGF and IFORT compilers and run on Intel 
and AMD chipsets. 

 
Chipset 

 
Compiler 

Original 
CAMx (min) 

Updated 
CAMx (min) 

Reduction 
(%) 

Max Ozone Difference (ppb) 

Grid 1 Grid 2 Grid 3 

Intel PGF 185 153 17% 0.157 0.817 0.921 

Intel IFORT 229 124 46% 0.348 3.013 1.114 

AMD PGF 169 135 20% 0.157 0.817 0.921 

AMD IFORT 371 116 69% 0.176 0.817 1.114 

 
 
Using PGF, model speed was consistently reduced by roughly 20% on the Intel and AMD 
machines.  Much larger improvements of 50% or more were noted for IFORT, particularly on 
the AMD machine.  However, the unmodified IFORT model was much slower on both machines 
than its PGF counterpart, and so the updates were effective in aligning model speed 
performance across compilers and hardware.  The rather slow performance of the original 
IFORT model on the AMD machine is concerning, but may be related to the fact that IFORT 
compilation was executed on an Intel chipset and so not optimized for AMD.  We suspect that 
the IEEE compiler flag for the IFORT/Intel run may have played a role in this feature.  Since this 
should not be an issue for TCEQ’s PGF compilations, we plan to further test this issue on our 
own in the near future. 

Maximum concentration differences are generally well below 1 ppb.  However, concentration 
differences up to a few ppb are noted in Table 3-7 (Intel chipset, IFORT build).  Differences of 
this magnitude are most likely related to small changes in the behavior of individual PiG puffs 
(chemistry, location, size) as a result of the various modifications implemented in CAMx.  This 
result is consistent with the PiG-related impacts identified in the interim testing (Section 3.1.3).  

3.2.2 Profiling Results 

A final profiling test was run for the updated version of CAMx.  The model date and 
configuration was identical to Phase 1 “Run 3” so that comparisons could be made directly to 
profiling results from the original version of CAMx (Table 2-4 ).  Table 3-8 presents timing 
results from OMP thread 0 (consisting of all model processes).  The sum of all processes and 
individual routines listed comprised 93% of the 10,308 second total CPU time for thread 0.  
Total run time was reduced 14% relative to the original Run 3.  Although the order and relative 
time spent in each model process remained similar to Table 2-4, the updates reduced time 
spent in OMP and system routine substantially (from 1100 seconds to 553 seconds, or from 9% 
to 6% of total run time, or about 34% of the total reduction in run time). 
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Table 3-8.  Rerun of Run 3 (Table 2-4) with all compiler flag and code updates.  Process and 
routine CPU time for OMP thread 0.  Routines parallelized with OMP are noted. 

Process Routine OMP Time (s) Time (% of total) 

Chemistry 
45% 

 ebirate3                     1,770 17% 

 ebisolv                      839 8% 

 hr_hox3                      648 6% 

 ebirxn3                      461 4% 

 chemdriv                     369 4% 

 hr_nox3                      360 3% 

 hr_nxy3                      150 1% 

 hr_pan3                      129 1% 

 kphoto                       54 <1% 

Diffusion 
10% 

diffuse  635 6% 

tridiag  317 3% 

vdiffimp  123 1% 

V Advection 
10% 

zadvec  321 3% 

tridiag  317 3% 

vrtslv  278 3% 

zrates Partial 73 <1% 

H Advection 
10% 

hadvppm  718 7% 

xyadvec  266 3% 

PiG 6% pigdrive Partial 585 6% 

Output 
3% 

average  154 1% 

massum  153 1% 

aggreg  84 <1% 

OMP 3% _mp_barrier  295 3% 

System 
3% 

__c_mzero4  193 2% 
__c_mcopy4  65 <1% 

Emissions 1% Emiss Partial 135 1% 

 
 

3.3 Testing at TCEQ 

The updated CAMx code was delivered to TCEQ for further testing on the agency’s computer 
system.  The specifications of the computer cluster used for these tests are listed below: 

 Seven Dell PE M620 nodes with dual 8-core Xeon E5-2650v2 chipsets (112 cores total), 2.6 
GHz, 32 GB RAM 

 InfiniBand (IB) Network, 40Gb/s 

 Dell NFS Storage Solution (NSS; Dell PE R710 server and Dell PV MD1200 disk arrays) – XFS 
file systems accessed by server nodes via NFS over IB network 

 IBM Platform HPC cluster management software 

Both modified and un-modified versions of CAMx were compiled using PGF compiler v15.7.  For 
both compilations the standard “O2” compiler optimization was invoked, but the PGF compiler 
flag “-Mconcur= nonuma” was removed.  Additionally, the modified CAMx code was compiled 
with PGF compiler flag “-Kieee” removed.  In both cases, CAMx was parallelized using MPICH 
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v3.1.4 across 6 nodes and with 16 OMP threads on each node, utilizing 96 physical cores 
without hyper-threading.   

Table 3-9 presents the timing results from 2-day tests (June 14 and 15) from TCEQ’s June 2012 
modeling episode using the same CAMx configuration as described in Section 3.2.1.  TCEQ 
obtained model run times of less than 1 hour per simulation day using CAMx v6.20.  Speed 
improvements of about 15% were realized with the CAMx updates, which is consistent with our 
results for the PGF compiler on Intel chipsets (Table 3-7).  TCEQ found maximum ozone 
concentration differences similar to the values shown in Table 3-7.   

Table 3-10 presents additional timing results obtained by the TCEQ with PiG turned off.  Greater 
speed improvements are realized without PiG, by roughly 8%.  For the TCEQ, PiG took roughly 
30% of the total model run time, compared to less than 10% in our tests.  This may be related 
to fewer active PiG puffs on the day of our tests (May 17) vs. TCEQ’s (June 14-15).  More likely, 
it is because the core model scales better with number of threads than does PiG, combined 
with TCEQ’s use of 96 cores as compared to 24 in our tests.  Furthermore, in the TCEQ’s tests 
PiG consistently took ~1000 seconds (17 minutes) for both CAMx v6.20 and the updated model, 
showing that PiG is insensitive to speed improvements implemented in this project.  Speed 
improvements for PiG should be addressed in future work. 
 

Table 3-9.  CAMx runtimes for the unmodified CAMx model and the updated code with all 
speed improvements: TCEQ’s 2-day run with MPI and OMP parallelization over 96 cores. 

Episode Day CAMx v6.20 (s) Updated CAMx (s) Reduction (%) 

June 14 3332 2773 17% 

June 15 2993 2632 12% 

 

Table 3-10.  As in Table 3-9, but with PiG turned off.  The “Time for PiG” is the absolute 
runtime consumed by PiG for each day and for each version of CAMx.  

Episode Day CAMx v6.20 (s) Updated CAMx (s) Reduction (%) 

June 14 2246 1681 25% 

Time for PiG  1086 4 1092  

June 15 2042 1644 19% 

Time for PiG  951 988  

 

                                                        
4 For CAMx v6.20 on June 14, Time for PiG = 3332 s – 2246 s 
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4.0 CONCLUSION AND RECOMMENDATIONS 

Recent additions and updates to CAMx have increased demands on computer resources and 
have extended model runtimes.  TCEQ plans to conduct seasonal modeling with PM and high 
resolution grids, all of which increase computational demands.  The objectives of this project 
included (1) identifying areas of the CAMx code where improvements would likely have the 
most impact on model speed, (2) developing and testing various methods to achieve speed 
improvements, and (3) documenting the speed and accuracy impacts of these modifications 
using a TCEQ modeling dataset.   

Ultimately we implemented several modifications that resulted in the following speed 
improvements on two of our computer systems using the TCEQ 2012 modeling database with 
halogen chemistry (CB6r2h) and the Plume-in-Grid (PiG) module: 

 15-30% speed improvement when compiled using PGF compiler; 

 45-50% speed improvement when compiled using IFORT compiler. 

The project was conducted under two phases.  In Phase 1, we identified areas of the model 
most needing speed enhancements according to analyses conducted using third-party code 
profiling tools.  Two issues were immediately apparent from our analysis: 

 TCEQ should use the “K-theory” vertical diffusion in lieu of the ACM2 option.  This is a 
runtime option that requires no alternative input data or model compilation, and generates 
practically identical results in much less time.  EPA is currently improving the ACM2 solver 
and this can be brought into CAMx in the future. 

 An unnecessary PGF compiler flag “-Mconcur=nonuma” was found to dramatically increase 
CAMx run times with PGF v13.4.  TCEQ should remove this option in case their PGF compiler 
version is similarly affected by this flag. 

Under Phase 1 we found that the chemistry solver, and specifically a single routine that 
calculates reaction rates, comprises up to 50% of simulation time and that the addition of 
halogen chemistry slowed the model down disproportionately to the number of additional 
species and reactions.  We also identified certain issues related to our implementation of OMP 
parallelization in CAMx.  Finally, we expect that the current structure of multi-dimensional 
variables and the order of process splitting (emissions, transport, chemistry) likely have some 
negative impact on model speed related to memory access (caching) efficiency and overhead 
associated with MPI parallelization.  Addressing these last issues requires greater effort and 
more fundamental changes to the CAMx code structure, but carries less certainty for speed 
improvements.  We recommend specific activities for future work below. 

Phase 2 addressed the highest priorities identified in Phase 1 according to available project 
resources and schedule.  We implemented and tested several modifications to CAMx code, 
OMP parallelization and compiler flags.  The following specific modifications were most 
effective in improving model speed: 
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 Remove IEEE compiler flags that standardize mathematical calculations among compilers 
and thus preclude the use of compiler-specific optimized routines; 

 Improve mixed-mode math statements for explicit typing (real, integer, single/double 
precision, etc.) to maintain accuracy without the need for IEEE flags; 

 Tailor OMP loop scheduling and collapsing to maximize OMP efficiency and scalability; 

 Update chemistry solver convergence criteria; this strategy is particularly effective for 
halogen chemistry; 

 Remove DDM-specific calculations from the reaction rate routine (we have updated the 
Chemical Mechanism Compiler to automate this change across all mechanisms). 

We found that halogen chemistry derives more speedup than the standard CB6r2 mechanism, 
and that the modifications tend to align model speed performance across compilers and 
hardware.  Impacts to peak ozone concentrations from these modifications were found to be 
well below 1 ppb in cases without PiG, to generally just below 1 ppb (and in some cases just 
exceeding 1 ppb) with PiG.  This is attributed to small changes in PiG behavior that cause puffs 
to dump mass to the grid at slightly different times (and possibly locations).  We see no impacts 
to OMP scalability with these speed improvements. 

We have provided the updated version of CAMx to TCEQ at the close of this project.  Tests were 
performed on the agency’s computer cluster system using the same June 2012 datasets and 
model configuration as our tests.  TCEQ’s utilization of 96 cores for parallelization results in 
model run times of less than 1 hour per simulation day.  Additional speed improvements of 
about 15% are realized with the CAMx updates, which are consistent with our results.  Greater 
speed improvements by roughly 8% are realized without PiG.  Removal of PiG in TCEQ’s tests 
results in a consistent ~1000 second (17 minute) improvement in both the original model and 
the updated model, suggesting that PiG is insensitive to speed improvements implemented in 
this project. 

CAMx code updates described here will be incorporated into the next public release of CAMx. 

4.1 Recommendations 

We recommend that TCEQ conduct tests over their longer modeling periods to benchmark 
speed improvements.  We also suggest that TCEQ apply CAMx with a variety of OMP/MPI 
combinations on their computer system to see if these updates impact optimum parallelization.   

Based on results from this project, we recommend follow-on work to further improve CAMx 
speed performance:   

 Update the ACM2 vertical diffusion solver according to EPA’s improvement for CMAQ; 

 Screen for instances where mixed-mode math statements are inadequately coded and 
make appropriate adjustments; 

 Implement efficiency and OMP parallelization improvements in the Plume-in-Grid model; 
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 Add OMP parallelization to currently un-parallelized portions of the code; 

 Further investigate and test efficiency from scheduling OMP loops as static or dynamic; 

 Investigate and test improvements to MPI parallelization for processes that consistently and 
inherently suffer from load imbalance, e.g., Plume-in-Grid; 

 Restructure major 3- and 4-D variable arrays (in combination with the point below) for more 
efficient memory management and caching; 

 Restructure the order of key physical processes in the model (emissions, transport, 
chemistry, PiG) to operate together more efficiently by improving memory caching and 
reducing MPI overhead. 
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